説明
タイトル
デフォルト
テキスト
テキスト
テンプレート
heading_title
テキスト
テキスト
テンプレート
kv
タイトル(小)
テキスト
テキスト
テンプレート
title
タイトル(小)
テキスト
テキスト
テンプレート
title_center
テキスト
テキスト
定義リスト
タイトル デフォルト
リード文
リード文
- タイトル1
- テキスト1
テキスト1
- テキスト2
- テキスト2
テキスト2
下段テキスト
下段テキスト
テンプレート glossary
リード文
リード文
- タイトル1
- テキスト1
テキスト1 - テキスト2
- テキスト2
テキスト2
下段テキスト
下段テキスト
テキスト+画像
-
タイトル(小)2
タイトル2
テキスト2
テキスト2テキスト2
テキスト2テキスト2
テキスト2テキスト2
テキスト2テキスト2
テキスト2テキスト2
テキスト2テキスト2
テキスト2テキスト2
テキスト2
タイトル(小)2タイトル2
テキスト2
テキスト2
タイトル2
テキスト2
テキスト2
ページリスト
ページリストのタイトル デフォルト
テンプレート Case List
-
2024.01.25 樹脂流動解析と樹脂材料の話樹脂材料と一口にいっても千差万別、原材料製造メーカーがしのぎを削って数多の材料を日々開発しています。 昨今、日本国内においても海外メーカーが製造する樹脂材料を使用している製品が非常に多くなっています。 かつてほど画一的な大量生産といわれなくなった樹脂成形ですが、人知れずどこかの工場でまだまだ大量生産が行われています。 さて、そんな樹脂材料ですが、世界中で使われている材料のグレード(銘柄)は数万とも、更にそれ以上とも言われています。成形メーカーが独自にブレンドしたり成分調整を行ったりすることもあり、正確なデータは存在していません。その物性、特性も様々で樹脂成形品の製造には苦労が絶えません。 射出成形用の金型設計を行う場合、ほとんどの場合において指定された成形材料が、どの程度体積変化(成形収縮率を)をするのか検討するところから始まります。材料ペレットと呼ばれる粒状の材料を、射出成形機内で溶融し、その溶融された樹脂材料を金型へ充填することでプラスチック製品を製造しますが、溶融状態から冷却されて固化する過程で収縮し小さくなります。 成形機で充填速度や圧力、温度を調整することである程度の抑制は可能ですが、収縮をなくすことはできません。そのため金型は、成形品が小さくなることを見込んで、製造したい製品のサイズよりも僅かに大きい寸法で作成しています。この収縮見込み寸法がズレていると狙った寸法が得られず、成形品は規格外となってしまいます。 金型設計の際、収縮率を検討する上で金型設計者が先ずに気にすることは、結晶性樹脂なのか?非晶性樹脂なのか?です。非晶性の材料は、収縮率がおよそ1%未満と小さく、収縮による寸法変化が余りありません。したがって反りや捻じれなどタチの悪い変形もあまりしません。そのかわり小さくならない分、金型への食いつき、張りつきによって離型(型から取出す)が難しくなることがあります。樹脂流動解析でも解析結果に直接現れないため、間接的に評価するなど工夫が必要です。例えば、解析結果上で収縮率が0.1%を下回る場合には離型注意などフラグを立て成形TRYで離型不良が発生するかどうかの検証を行い、予め経験値を積み上げておく必要があります。 結晶性材料はどうでしょうか。エンジニアリングプラスチック(以降、エンプラ)に分類される材料は大半が結晶性材料で1.0%~4.0%程度の収縮率を示します。結晶化度が大きく変化し且つ局所的に変化するため、同じ金型で成形を行っても条件次第で寸法変化が大きく出たり反り、変形といった不具合は比較的出やすい傾向にあります。加えて成形サイクル短縮を目的として金型温度の設定を低めにすると、結晶化度が下がって大きめの寸法になるだけでなく、一般的に”後収縮”と呼ばれる寸法変化が発生します。数週間~数ヶ月というスパンで寸法や変形の状態が変化するため変化を捉えにくく注意が必要です。場合によって1ヶ月倉庫保管してから出荷検査を実施するといったこともあります。この”後収縮”については、樹脂流動解析上で評価する方法が確立されておらず評価が難しい現象です。 他にも分子配向や分子破断による材料劣化といった、予測の難しい現象は樹脂流動解析上では割愛されていることが多く、まだまだ発展途上と言えるかもしれません。しかし、より良く解析結果を読み解き製品の仕上がりを予測するには、時としてこういった知識が必要になることがあります。ソフトウェア上で得られる結果数値だけに捕らわれず、是非興味を持って実機との比較を元に掘り下げてみてはいかがでしょうか。
詳細を見る -
2022.06.15 用語集詳細を見る
-
2019.01.07 オープンソースCFDの歴史と展望
1989年、ヘンリー・G・ウェラーとその友⼈により開発が始まったオブジェクト指向型⾔語C++クラスライブラリによる流体解析プログラムは現在世界各地の連続体/流体シミュレーションを必要とする研究者および製品開発に携わる技術者のオープンソースCFDプラットフォームに育って来た。この間、初期段階ではインペリアルカレッジ他のソルバ、モデル研究開発ツールとして、その⾻格が出来上がり、その後、数年の商⽤コード化により、企業での利⽤に鍛えられるソフトウェアのベースが構築され、2004年暮れからのオープンソース化により爆発的にユーザー層の拡⼤が図られて来た。また、それに伴い、様々なソルバ、アプリの開発が進められた。オープンソース化されてから暫くは研究コードの置き換えや⼀部の信奉者による利⽤に限られていたが、2008年からの世界経済の落ち込みにより、企業トップによる経費削減の期待に合致するものとして、各企業での既設商⽤CFDの代替えツールとしての検証、利⽤が積極的 に⾏われ始めた。更に、HPC, クラウド環境が整備されると、その移殖性、ライセンス拘束のなさ、並列計算効率などによりユーザーが更に増加した。ここまではどちらかというと流体解析のプロが扱うものだったが、HELYX®に代表されるWindowsベースもあるGUIシステムが出現すると設計部⾨にも展開できる素地ができつつある。その機能強化された⾼精度メッシャ、収束性の⾼いソルバにより、GUIを簡易化し、製品毎の設計に適合した機能に限定したウィザード、ダイアログによる設計現場のパラメータスタディツールに仕⽴て上げることもできるようになって来ている。 それでは、何故このようにOpenFOAM®が発展を遂げて来たかの技術背景と今後の展望を次に述べたいと思う。
詳細を見る
テンプレート Case List Tag
テンプレート Case Relate
テンプレート Event List
テンプレート News LIst
テンプレート Product Case List Tag
テンプレート Product List Tag
テンプレート Product Relate
テンプレート Product Seminer
テンプレート Seminer Relate
テンプレート Seminer Search
-
2022.07.08精子の運動分析
【課題】 コンピューターによる精子の分析(CASA)は男性の不妊症に関する研究に対して重要なツールとなりましたが、研究者によっては手動で行う測定技術の方が CASAより優れているとは思っています。人間の精子はまっすぐ泳ぐだけではないので運動を解析することは非常に困難です。泳ぐ方向を変える際には頭だけでなく、尻尾も動かします。精子細胞の動きのパターンと活発さが精子の健康の指標であるので、この動きを性格に解析しモデル化することが重要です。 【隠れたパターンのための新たな解析】 精子の運動をモデル化するためには、動き自体を多少単純化しなければなりません。しかし、何を単純化すればいいのかを見つけることは非常に難しいことです。現在利用可能なCASAツールは平均的な精子の軌道を固定長移動平均を用いて精子の曲線軌道を滑らかにすることによって計算します。また、精子の頭の部分のみ考えて測定します。カルフォルニア大学デービス校の産婦人科学部のRussel Davis、 Paul Niswander、 David Katzの3人の研究者によって、この測定方法では多くの情報を失う危険があると判明しました。それは精子サンプルの動きに関する不確実な結果を招くことに繋がります。このタイプの測定は、不規則に泳ぐ精子の軌道によって画像が歪んでしまうので、不正確な計算が、平均軌道の速度(VAP)・外側頭の変位 (ALH)・平均経路との交叉回数(BCF)・曲線軌道の曲がり具合(WOB)・曲線軌道の直線成分(STR)のような精子の健康状態を評価する重要な測定を不正確にします。Dr.Davisと同僚は、誰も見つけたことがない精子の軌道パターンを見つけるためには新しい解析手法が必要だと感じています。また、そのためには新しいCASAツールが必要になると考えられています。 【問題の解決】 Davis氏と同僚は精子の運動解析に対する別のアプローチとしてDADiSPを用いました。彼らは新しい方法は、以前の方法に比べて精子の運動をより性格に特徴付けることが出来ると考えています。 ユーザー:医科大学、産婦人科学部 キーワード:生物学アプリケーション/不妊性の解析"
詳細を見る -
2021.03.09
Simcenter FLOEFD解析事例「冷房中の室内換気におけるサーキュレーター使用の最適化」をアップいたしました。
詳細を見る -
2022.06.07HELYX
- 固体力学分野
詳細を見る
テンプレート Top List
テンプレート ベーシックリスト
記事
テンプレート News Cont Txt
囲み記事
テキスト
枠線
リスト
- テキスト
縦並び - テキスト
- テキスト
横並び - テキスト
フロー
リード文
リード文
-
キャプションタイトルテキスト
テキスト
スライダー+リスト
タイトル 縦並び
- テキスト
- テキスト
タイトル 横並び
- テキスト
- テキスト
スライダーなし
- リストテキスト
詳細テキスト
テンプレート Package Products
- リストテキスト
- リストテキスト
詳細テキスト
詳細テキスト
テンプレート Package Products(スライダーなし)
プラスチック部品設計者向けで、設計初期段階で部品を製造用に最適化が可能。プラスチック部品設計者向けで、設計初期段階で部品を製造用に最適化が可能。プラスチック部品設計者向けで、設計初期段階で部品を製造用に最適化が可能。プラスチック部品設計者向けで、設計初期段階で部品を製造用に最適化が可能。プラスチック部品設計者向けで、設計初期段階で部品を製造用に最適化が可能。プラスチック部品設計者向けで、設計初期段階で部品を製造用に最適化が可能。プラスチック部品設計者向けで、設計初期段階で部品を製造用に最適化が可能。
SOLIDWORKSにアドオンするので、習得が簡単で、設計の形状、適合性、機能を最適化すると同時に設計案を解析および修正可能。
サポート
共通タイトル
タイトル
テキスト
テキスト
-
STEP01
ステップ
ステップ -
STEP02
ステップ
ステップ
タイトル
テキスト
テキスト
-
STEP01
テキスト
テキスト -
STEP02
テキスト
テキスト