説明
タイトル
デフォルト
テキスト
テキスト
テンプレート
heading_title
テキスト
テキスト
テンプレート
kv
タイトル(小)
テキスト
テキスト
テンプレート
title
タイトル(小)
テキスト
テキスト
テンプレート
title_center
テキスト
テキスト
定義リスト
タイトル デフォルト
リード文
リード文
- タイトル1
- テキスト1
テキスト1
- テキスト2
- テキスト2
テキスト2
下段テキスト
下段テキスト
テンプレート glossary
リード文
リード文
- タイトル1
- テキスト1
テキスト1 - テキスト2
- テキスト2
テキスト2
下段テキスト
下段テキスト
テキスト+画像
-
タイトル(小)2
タイトル2
テキスト2
テキスト2テキスト2
テキスト2テキスト2
テキスト2テキスト2
テキスト2テキスト2
テキスト2テキスト2
テキスト2テキスト2
テキスト2テキスト2
テキスト2
タイトル(小)2タイトル2
テキスト2
テキスト2
タイトル2
テキスト2
テキスト2
ページリスト
ページリストのタイトル デフォルト
テンプレート Case List
-
2022.07.08 精子の運動分析【課題】 コンピューターによる精子の分析(CASA)は男性の不妊症に関する研究に対して重要なツールとなりましたが、研究者によっては手動で行う測定技術の方が CASAより優れているとは思っています。人間の精子はまっすぐ泳ぐだけではないので運動を解析することは非常に困難です。泳ぐ方向を変える際には頭だけでなく、尻尾も動かします。精子細胞の動きのパターンと活発さが精子の健康の指標であるので、この動きを性格に解析しモデル化することが重要です。 【隠れたパターンのための新たな解析】 精子の運動をモデル化するためには、動き自体を多少単純化しなければなりません。しかし、何を単純化すればいいのかを見つけることは非常に難しいことです。現在利用可能なCASAツールは平均的な精子の軌道を固定長移動平均を用いて精子の曲線軌道を滑らかにすることによって計算します。また、精子の頭の部分のみ考えて測定します。カルフォルニア大学デービス校の産婦人科学部のRussel Davis、 Paul Niswander、 David Katzの3人の研究者によって、この測定方法では多くの情報を失う危険があると判明しました。それは精子サンプルの動きに関する不確実な結果を招くことに繋がります。このタイプの測定は、不規則に泳ぐ精子の軌道によって画像が歪んでしまうので、不正確な計算が、平均軌道の速度(VAP)・外側頭の変位 (ALH)・平均経路との交叉回数(BCF)・曲線軌道の曲がり具合(WOB)・曲線軌道の直線成分(STR)のような精子の健康状態を評価する重要な測定を不正確にします。Dr.Davisと同僚は、誰も見つけたことがない精子の軌道パターンを見つけるためには新しい解析手法が必要だと感じています。また、そのためには新しいCASAツールが必要になると考えられています。 【問題の解決】 Davis氏と同僚は精子の運動解析に対する別のアプローチとしてDADiSPを用いました。彼らは新しい方法は、以前の方法に比べて精子の運動をより性格に特徴付けることが出来ると考えています。 ユーザー:医科大学、産婦人科学部 キーワード:生物学アプリケーション/不妊性の解析"
詳細を見る -
2021.03.09 Simcenter FLOEFD解析事例「冷房中の室内換気におけるサーキュレーター使用の最適化」をアップいたしました。詳細を見る
-
2022.06.07 HELYX詳細を見る
テンプレート Case List Tag
テンプレート Case Relate
テンプレート Event List
テンプレート News LIst
テンプレート Product Case List Tag
テンプレート Product List Tag
テンプレート Product Relate
テンプレート Product Seminer
テンプレート Seminer Relate
テンプレート Seminer Search
-
2025.12.10
SOLIDWORKS Simulation スクール・セミナー 一覧
SOLIDWORKS Simulation 導入検討中のお客様向けの無料体験セミナーおよびユーザー様向け有償操作スクールの一覧です。 操作スクールは、来場型の集合スクールや企業訪問スクール、オンライン開催など、開催方法も選択可能です。 お客様の解析課題やご要望に合わせた講習内容のカスタマイズなどもお気軽にご相談ください。
詳細を見る -
2022.06.17
CAE(解析)・CAD活用のためのセミナー、イベント、操作スクール
CAEソリューションズでは、CAE(解析)に関する基礎知識からソフトウェアの使用方法まで、多岐にわたる解析スクールをご提供しています。 集合スクールや企業ごとの個別開催スクール、オンライン開催など、開催方法も選択可能です。 お客様の解析課題やご要望に合わせた講習内容のカスタマイズなどもお気軽にご相談ください。
詳細を見る -
2022.07.11繊維状粒子でモデル化した草を刈るシミュレーション
Aspherixを使った繊維状粒子の草を刈るシミュレーションです。ここでは粒子の長さを色で表現しています。もみの木の右に草を刈るブレードが黒い長方形の形状として表示されています。ブレードの高さはちょうど草の緑色の粒子と同じ位置にあり、これが移動しながら回転すると繊維粒子を切断し、周辺に赤い粒子が飛び散っていることがわかります。 Aspherixでは、球体だけでなく、このような繊維粒子、マルチ球体、ボンド粒子、凸形状、凹形状、スーパークアドリックといった様々な種類の粒子を使ってシミュレーションを行うことができます。 繊維粒子では、この繊維を構成する粒子間にはたらく力によって、繊維が曲がった後の復元力を再現したり、高度な繊維モデルを使用して、繊維粒子間の凝集、塑性変形、座屈も考慮して計算を行うことができます。 【粒子の設定】 この例では充填タイプの粒子挿入方法を使用しています。まず薄い地面領域を設定し、そこに種となる粒子をランダムに配置します。この種を起点に繊維粒子を配置します。 繊維粒子:半径0.003mの球状粒子が15個連なった数珠状粒子 法線接触モデル:hertz 接線接触モデル:history 凝集モデル:fiber 転がり摩擦モデル:設定なし 重力設定:あり 粒子挿入設定:種となる粒子の数を534個 またブレードと粒子の接触により、繊維粒子が移動しないよう、地面上の粒子は速度0として固定しています。 【メッシュ壁面の設定】 壁面に設定した材料により機械力学的、熱力学的性質が考慮されます。ブレードには並進運動と回転運動を設定します。もみの木は装飾としてモデルの中に含んでいるため、シミュレーションの結果には直接影響しませんが、材料設定やメッシュの生成は必要です。 法線接触モデル:hertz 接線接触モデル:history 凝集モデル:設定なし 転がり摩擦モデル:設定なし ブレードの運動:1m/sで並進運動+周期0.0321sで鉛直方法を軸とした回転運動
詳細を見る
テンプレート Top List
テンプレート ベーシックリスト
記事
テンプレート News Cont Txt
囲み記事
テキスト
枠線
リスト
- テキスト
縦並び - テキスト
- テキスト
横並び - テキスト
フロー
リード文
リード文
-
キャプションタイトルテキスト
テキスト
スライダー+リスト
タイトル 縦並び
- テキスト
- テキスト
タイトル 横並び
- テキスト
- テキスト
スライダーなし
- リストテキスト
詳細テキスト
テンプレート Package Products
- リストテキスト
- リストテキスト
詳細テキスト
詳細テキスト
テンプレート Package Products(スライダーなし)
プラスチック部品設計者向けで、設計初期段階で部品を製造用に最適化が可能。プラスチック部品設計者向けで、設計初期段階で部品を製造用に最適化が可能。プラスチック部品設計者向けで、設計初期段階で部品を製造用に最適化が可能。プラスチック部品設計者向けで、設計初期段階で部品を製造用に最適化が可能。プラスチック部品設計者向けで、設計初期段階で部品を製造用に最適化が可能。プラスチック部品設計者向けで、設計初期段階で部品を製造用に最適化が可能。プラスチック部品設計者向けで、設計初期段階で部品を製造用に最適化が可能。
SOLIDWORKSにアドオンするので、習得が簡単で、設計の形状、適合性、機能を最適化すると同時に設計案を解析および修正可能。
サポート
共通タイトル
タイトル
テキスト
テキスト
-
STEP01
ステップ
ステップ -
STEP02
ステップ
ステップ
タイトル
テキスト
テキスト
-
STEP01
テキスト
テキスト -
STEP02
テキスト
テキスト